Post-Construction Evaluation of Forecast Accuracy

December 8, 2008

Pavithra Parthasarathi David Levinson University of Minnesota

Presentation Outline

Research objectives

Data collection

Analysis of forecast data

Identifying reasons for forecast inaccuracy

Conclusions

Questions?

Research Objectives

 Evaluate the accuracies of MnDOT demand forecasts

Identify and estimate the inaccuracies in roadway traffic forecasts

- Identify reasons for presence of inaccuracies
- Provide recommendations

Data Collection

- 9 months of project time
- 211 project reports scanned
- 108 reports used in the final database

5,158 roadway segments with forecast data

2, 984 of 5, 158 roadway segments have actual traffic data (AADT)

• The same information was collected from all forecast reports to ensure consistency

Analysis of forecast data

Illustrative Analysis

Macro-level analysis

Inaccuracy = Forecast Traffic Actual Traffic

Inaccuracy estimated by different categories to better understand the data

Anoka County

Washington County

Carver & Scott County

Statistics

Inaccuracy Ratio = <u>Forecast Traffic</u> Actual Traffic	Overestimation (Inaccuracy ratio>1.0)	Underestimation (Inaccuracy ratio<1.0)	Exact(Inaccur acy ratio=1.0)
Average Inaccuracy	48%	48%	4% (within +/-0.5%)
Critical Link Inaccuracy	27%	65%	8% (within +/-5.0%)

Note - The above statistics are based on data from the 108 project reports in the database

Statistics

Project Type	Frequency	Average Inaccuracy	Maximum Inaccuracy	Minimum Inaccuracy
Existing Roadways	77%	I.20	8.94	0.01
New Roadways	23%	0.95	5.00	0.16

Note - The above statistics are based on data from the 108 project reports in the database Roadways classified as existing or new facility based on the status at the time of report preparation

Count Range

Estimated Inaccuracy

Summary

 No clear trend seen in the estimation of average inaccuracy by project

Trend of underestimation seen in the estimation of inaccuracy on critical links

 Higher functional classification roads and higher volume roadways seem more prone to underestimation

Quantitative Analysis

- To identify the factors influencing forecast inaccuracy
 - Only main roadways included
 - Other roadways in the project not included
 - Additional information collected for the main roadways used in the analysis

- Ordinary Least Square Regression Model
 - I = f(N, H, F, V, D, T, S) where,
 - I = Inaccuracy ratio

N = Number of years between report year and forecast year

H = Highway type - radial or lateral

- F = Functional classification
- V = Project VKT or VMT
- D = Segment direction
- T = Decade of report preparation
- S = Roadway status existing or new

Dependent Variable = Forecast Traffic/Actual Traffic					
Variable	Coefficient	Std. Error	t	P> t	
Number of years	-0.034	0.004	-9.560	0.000	
ProjectVMT	0.000	0.000	-1.430	0.153	
Radial highway type	-0.108	0.033	-3.330	0.001	
Collector	-0.112	0.226	-0.500	0.619	
Divided Arterial	0.047	0.057	0.830	0.407	
Expressway	0.097	0.043	2.270	0.024	
Undivided Arterial	0.03 I	0.049	0.640	0.523	
East	0.264	0.082	3.230	0.001	
Middle North	-0.036	0.073	-0.490	0.624	
Middle South	-0.348	0.105	-3.320	0.001	
North	-0.113	0.072	-1.560	0.119	
Northeast	0.552	0.077	7.200	0.000	
Northwest	-0.193	0.087	-2.220	0.027	
South	-0.056	0.071	-0.780	0.434	
Southeast	0.358	0.070	5.140	0.000	
Southwest	-0.162	0.079	-2.050	0.041	
West	-0.154	0.083	-1.860	0.063	
Rept year between 1970-1980	0.111	0.042	2.610	0.009	
Rept year between 1980-1990	0.064	0.047	1.350	0.177	
Rept year after 1990	0.278	0.220	1.260	0.207	
New Facilities	-0.125	0.039	-3.220	0.001	
constant	1.639	0.088	18.630	0.000	
Number of obs	1275				
R-squared	0.251				
Adj R-squared	0.238				
Root MSE	Root MSE 0.503				
Positive & significant - Overestimation; Negative & significant - Underestimation					

Qualitative Analysis

- Conducted interviews with modelers in the Twin Cities
 - Modeling experience varied among the interviewees
 - Seven interviews conducted in May June 2008
 - Interviews conducted in-person, via email or over the phone

Goal was to obtain perspectives and useful insights on modeling in the Twin Cities

To understand the reasons for inaccuracy in traffic forecasts

Standard set of 5 questions asked of all the interviewees

- I. Your understanding of possible sources of error in the Twin Cities models?
- 2. With the current expertise in modeling that we have, what could have be done differently with the model development in 1970s, 1980s?

- 3. How does the Twin Cities model compare with other models that you have worked with or had an opportunity to look at?
- 4. How would you respond to criticisms against modeling?
- 5. Have there been instances of political compulsions influencing the model forecasting in the Twin Cities?

Stated reasons for inaccuracy

Inability of model to understand and predict societal changes

Labor force participation of women

Increases in mobility and auto ownership

Increasing influence of internet & technology

Model Inputs

Population - Employment inputs

Network inputs

Technical limitations inherent in previous models

Fewer people involved in modeling

Lack of a good understanding of trip distribution

Use of a fixed percentage of daily traffic for peak periods

Inability of the model to handle peak spreading

Over importance to home-based work (HBW) trips

Too much emphasis to assignments on principal arterials

Handling of special generators

ex. Mall of America

Political compulsions NOT too much of an issue in the Twin Cities

Private consultants likely to face more pressure from clients

Public agencies more likely to face a "push" to use existing or expected trends

Comparison of demographic forecasts

Average Inaccuracy estimated using 1975 Metropolitan council forecasts					
County	1980 Population 1990 Population		2000 Population		
Anoka	1.08	1.01	0.93		
Carver	1.02	1.19	1.04		
Dakota	1.17	1.19	1.19		
Hennepin	1.10	1.08	1.06		
Ramsey	1.12	1.17	1.22		
Scott	1.02	I.04	0.89		
Washington	1.11	1.27	1.22		
Total 7-county	1.11	1.12	1.10		

TBI data

TBI Data	1949	1958	1970	1982	1990	2000	1990 - 1970	2000 - 1970
HBW Average Trip Length: Miles	na	na	6.57	8.11	9.2	11.4	40%	74%
HBW Average Trip Time: Minutes	na	na	19.8	na	21.2	25.6	7%	29%
Trips Per Capita	1.78	2.45	2.72	3.37	3.9	4.2	43%	54%
Trips Per Household	na	7.52	8.88	9.08	10.12	10.3	14%	۱6%
Persons Per Household	na	na	3.27	2.68	2.56	2.46	-22%	-25%
Workers Per Household	na	na	1.3	1.38	1.42	na	9%	na
Auto Occupancy: HBW	1.12	1.12	1.19	1.15	1.07	1.05	-10%	-12%
Auto Occupancy: Overall	1.55	1.57	1.5	1.3	1.29	1.35	-14%	-10%
Percentage of Women in Labor Force*	na	na	48.8%	60.0%	67.8%	72.5%	39%	49%
*Source: 2005 Twin Cities Transportation System Performance Audit								

Network Inputs

New facilities identified in the 1976 Regional Development Framework (RDF) and expected to be completed by 1990					
Highways	From	То	Year Built		
I-35E	West Seventh Street	I-94	1984-1991		
I-35E	I-35	State Highway 110	1981-1985		
I-94 (Minneapolis)	US 12	57th Ave N	1980-1982		
I-494	State Highway 5	1-494	1982-1986		
US 10	Ramsey Co Rd J	State Highway 47	1990		
US 169/212	I-494	State Highway 41	1994-1996		
US 169 (W River Rd)	86th Ave N	Northtown Corridor	1983		
US 169/ State 101 (Shakopee Bypass)	US 169	State Highway 13	1976-1980		
Co Rd 18 (Hennepin)	5th Street S	Minnetonka Blvd	1994		
Co Rd 62 (Hennepin)	Co Rd 18	1-494	1985-1986		
Northtown Corridor	US 169	I-94	Not built yet		
Northtown River Crossing	US 10	US 169	1998		
LaFayette Expressway (52)	I-494/State Highway I I 0	State Highway 55/52	1985-1994		
I-335	I-94	I-35₩	Control Section eliminated in 1979		

Recommendations

Forecasting is a complicated long-term process

It is difficult to anticipate changes and control for errors

Better record keeping and data archiving procedures extremely essential

Better understanding and incorporation of fundamental societal changes is important

Blindly following existing trends might not be the best approach Lesser importance needs to be given to the use of absolute numbers in forecasts

Use of ranges

Acknowledgement of uncertainties

Non-modelers

Essential to understand the science, limitations and applicability of traffic forecasts

Questions?

Dependent variable: Inaccuracy Ratio = Forecast Traffic/ Actual Traffic					
Variable	Coefficient	Std. Error	t	P> t	
Number of years	-0.029	0.004	-8.100	0.000	
Project VKT	0.000	0.000	-1.550	0.121	
Radial Highway Type	-0.059	0.039	-1.520	0.128	
Collector	0.027	0.282	0.100	0.922	
Divided Arterial	0.051	0.069	0.730	0.463	
Expressway	0.128	0.052	2.460	0.014	
Undivided Arterial	0.148	0.054	2.740	0.006	
East	0.181	0.098	1.850	0.065	
Middle-North	-0.059	0.087	-0.680	0.494	
Middle-South	-0.395	0.120	-3.280	0.001	
North	-0.127	0.080	-1.580	0.115	
Northeast	0.492	0.092	5.360	0.000	
Northwest	-0.184	0.098	-1.860	0.062	
South	0.034	0.077	0.450	0.653	
Southeast	0.324	0.083	3.920	0.000	
Southwest	-0.197	0.090	-2.190	0.029	
West	-0.333	0.086	-3.880	0.000	
cons	1.552	0.095	16.400	0.000	
Number of obs	1358				
R-squared	0.161				
Adj R-squared	0.151				
Root MSE	0.638				
Positive & significant - Overestimation; Negative & significant - Underestimatior	n				

